In exercises 1 – 9, evaluate the limit.

1. \(\lim_{x \to -2} \frac{x + 1}{x^2 + x} = 0 \)
2. \(\lim_{x \to 0} \frac{\sin 3x}{5x} = \frac{3}{5} \)
3. \(\lim_{x \to 0} \frac{x + \sin x}{x} = 2 \)
4. \(\lim_{x \to 1} \frac{4x^2 + 3x - 2}{3x^2 - 7} = \frac{4}{3} \)
5. \(\lim_{x \to \frac{\pi}{2}} \csc x = \frac{2}{\sqrt{3}} \)
6. \(\lim_{x \to \frac{1}{2}} \frac{4x^2 - 2x}{8x - 4} = \frac{1}{4} \)

In exercises 10 and 11, find all horizontal asymptotes, vertical asymptotes, and removable discontinuities. Justify using limit statements.

10. \(f(x) = \frac{3x^2(2 - x)}{3x^2} \)
 - HA: \(y = -1 \)
 - V.A: \(x = 0 \)
 \(\text{no removable discontinuities} \)

12. Let \(f(x) = \begin{cases} x - 2, & \text{if } x < 0 \\ x^2 - x, & \text{if } 0 \leq x \leq 3 \\ 3x - 2, & \text{if } x > 3 \end{cases} \)
 (a) Graph the function to the right.
 (b) \(\lim_{x \to -2} f(x) = \frac{10}{2} = 5 \)
 (c) \(\lim_{x \to 0} f(x) = \frac{1}{2} \)
 (d) \(\lim_{x \to +3} f(x) = 16 \)
 (e) Is the function continuous for its entire domain? Justify using the definition of continuity.
 \(f(x) = \begin{cases} -1, & \text{if } x \leq -1 \\ 1, & \text{if } -1 < x < 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } 0 < x < 1 \\ 0, & \text{if } x \geq 1 \end{cases} \)
 (a) Graph the function to the right.
 (b) \(\lim_{x \to -1} f(x) = -1 \)
 (c) \(\lim_{x \to 0} f(x) = \text{DNE} \)
 (d) \(\lim_{x \to 1} f(x) = -1 \)
 (e) Is the function continuous? Justify using the definition of continuity.
 \(\text{not continuous; removable discontinuity at } x = 0 \)
 \(\text{jump discontinuity at } x = 1 \)

In exercises 14 and 15, find the value of \(k \) that makes the function continuous everywhere.

14. \(f(x) = \begin{cases} kx^2, & \text{if } x < 2 \\ 2x + k, & \text{if } x \geq 2 \end{cases} \)
 \(k = \frac{1}{2} \)

15. \(f(x) = \begin{cases} 2x^2 - 5x - 12, & \text{if } x < 2 \\ kx^3, & \text{if } x \geq 2 \end{cases} \)
 \(k = -1 \)

In exercises 16 – 22, use the graph of \(g \) to answer the following questions.

16. \(\lim_{x \to -2} g(x) = -4 \)

17. \(\lim_{x \to 1} g(x) = 0 \)

18. \(g(1) = 1 \)

19. \(\lim_{x \to 2} g(x) = -2 \)

20. \(\lim_{x \to -2} g(x) = -2 \)

21. \(\lim_{x \to 2} g(x) = 1 \)

22. At what \(x \)-value(s) does \(f(x) \) appear to fail to be differentiable? \(x = -1 \)

In exercises 23 and 24, use the definition of the derivative, \(f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \), to find the derivative.

23. \(f(x) = x^2 - 6x \)
 \(f'(x) = 2x - 6 \)

24. \(f(x) = \frac{1}{x + 1} \)
 \(f'(x) = \frac{1}{(x + 1)^2} \)

In exercises 25 – 27, consider the function \(f(x) = \sin \left(\frac{x}{3} \right) \).

25. Find the average rate of change over the interval \([\pi, 2\pi]\). 0

26. Find the instantaneous rate of change at \(x = 2\pi \).

27. Write the equation for the tangent line to the curve for \(x = 2\pi \).

28. Let
 \(f(x) = \begin{cases} x^2 - 2x + 1, & \text{if } x \neq -2 \\ 0, & \text{if } x = -2 \end{cases} \)
 Determine if the function is continuous everywhere. Justify using the definition of continuity.

 \(\text{no, there is an infinite discontinuity at } x = -2 \)
In exercises 29 – 31, suppose that \(u \) and \(v \) are differentiable functions at \(x = 2 \), and that \(u(2) = 3 \), \(v(2) = -4 \), \(u'(2) = 1 \), and \(v'(2) = 2 \). Use this information to find the following derivatives.

29. \(\frac{d}{dx} [u(v)] \bigg|_{x=2} = 2 \)
30. \(\frac{d}{dx} [u(v)] \bigg|_{x=2} = 10 \)
31. \(\frac{d}{dx} [3u - 2v + 2uv] \bigg|_{x=2} = -12 \)

In exercises 32 – 37, use the following table to answer the questions.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(F(x))</th>
<th>(F'(x))</th>
<th>(G(x))</th>
<th>(G'(x))</th>
<th>(H(x))</th>
<th>(H'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>4</td>
<td>-3</td>
<td>2</td>
<td>7</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>-6</td>
<td>-4</td>
<td>11</td>
</tr>
</tbody>
</table>

32. If \(H(x) = (F(x))^2 \), then what is \(H'(3) \)?
33. If \(H(x) = \frac{F(x)}{G(x)} \), then what is \(H'(3) \)?
34. If \(H(x) = F(x) \cdot G(x) \), then what is \(H'(3) \)?
35. If \(H(x) = G(F(x)) \), then what is \(H'(3) \)?
36. If \(H(x) = G(F(x)) \), then what is \(H''(3) \)?
37. If \(H(x) = \ln(F(x)) \), then what is \(H''(3) \)?

In exercises 38 – 43, use the function \(f(x) = x^3 \) to answer the questions.

38. Find \(f'(x) \).
39. Evaluate \(f(2) \). Explain the meaning of this.
40. Find the average rate of change over the interval \([-2, 2] \) at \(x = 2 \).
41. The instantaneous rate of change of \(x^2 \) is \(12 \); the slope of the tangent.
42. Find \(f''(x) \).
43. In exercises 44 and 45, use the table to answer the questions.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

44. Using the values in the table, estimate \(f''(3) \).
45. Use the data in the table to estimate the value of \(f''(5) \).
46. Explain why there must be a value \(c \), \(5 < x < 10 \), such that \(f(x) = 0 \).

In exercises 47 – 64, find the derivative.

47. \(f(x) = -\frac{x^4 + 4}{x^5 + 3x + 4} \)
48. \(f(x) = 2x - \frac{2x^3 + \sqrt{1+x^7}}{4x} \)
49. \(f(x) = \frac{3 - 2x - x^2}{x^5 - 1} \)
50. \(f(x) = x^7 \sin(4x) \)
51. \(f(x) = y^3 \sin(4y) \)
52. \(h(x) = \cos(7x) \)
53. \(y = 2 \cos^3(3x + 1) \)
54. \(y = 2 \cos^3(3y + 1) \)
55. \(y = y'(x^2 - 3)^3 \)
56. \(y = \csc^2(2x^3) \)
57. \(f(x) = x^3 \tan^2 x \)
58. \(f(x) = \ln(1 + e^{\cos^2 x}) \)
59. \(y = \ln(x^4 + 3) \)
60. \(y = e^{x^2} \)
61. \(g(t) = \tan^{-1}(3t - 4) \)
62. \(h(x) = \frac{x}{1 - x^2} + \sin^{-1}(x) \)
63. \(f'(x) = \frac{e^{-x}}{1 + e^x} \)
64. \(y = \arcsin(5x) \)
65. \(f(x) = 4x^2 \cos(4x) + 2x \sin(4x) \)
66. \(h'(x) = \frac{7x \sin(7x) - 4 \cos(7x)}{4x^2} \)
67. \(f(x) = \frac{2x^2}{(1-x)^3} \)
68. \(y' = -24 \cos^3(3x+1) \sin(3x+1) \)
69. \(y' = (x^2 - 3)^2 (8x^5 - 2x) \)
70. \(y' = -12 \csc^3(2x^2) \cot(2x^2) \)
71. \(f(x) = 2x^3 \tan(x) \sec(x) + 3x^2 + 9x^2 \)
72. \(f(x) = 3e^{-3x} \)
73. \(y' = \frac{3x+3}{x^2 + 3} \)
74. \(y' = (2x - 3)e^{x^2 - 3x} \)
75. \(y' = (2x - 3)e^{x^2 - 3x} \)