CONCEPTS:

1. When looking for absolute extrema, where do the possible extrema exist, and how do you find them?
 - Extrema may exist at endpoints and critical points (\(f' = 0 \) or undefined)
 - The max/min values can be obtained by plugging in the endpoints
2. How do you justify relative extrema?
 - Critical points and critical points into the function
 - \(f' \) changes signs (positive to negative or negative to positive)
3. How do you justify that a function is increasing or decreasing?
 - Increasing: \(f' > 0 \)
 - Decreasing: \(f' < 0 \)
4. How do you justify that a function is concave up or concave down?
 - Concave up: \(f'' > 0 \)
 - Concave down: \(f'' < 0 \)
5. How do you justify that a function has a point of inflection?
 - \(f'' \) changes signs
6. Using the graph of \(g(x) \) below, determine the signs of \(g'(x) \) and \(g''(x) \) at each point. Explain your reasoning.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(g'(x))</td>
<td>reason</td>
<td>(g''(x))</td>
</tr>
<tr>
<td>(a)</td>
<td>-</td>
<td>(g(x)) is decreasing</td>
<td>+</td>
</tr>
<tr>
<td>(b)</td>
<td>0</td>
<td>horizontal tangent</td>
<td>+</td>
</tr>
<tr>
<td>(c)</td>
<td>0</td>
<td>horizontal tangent</td>
<td>-</td>
</tr>
<tr>
<td>(d)</td>
<td>-</td>
<td>(g(x)) is decreasing</td>
<td>-</td>
</tr>
</tbody>
</table>
ABCALC Apps of Derivatives Review Session Problems

7. Given the graph of f' below answer each of the following questions, and justify your response with a statement that contains the phrase “since f' _______ ...”

a) When is f increasing?
 (a,b) and (d,e) since $f' > 0$

b) When is f decreasing?
 (b,d) since $f' < 0$

c) When is f concave up?
 (c,e) since f' is increasing

d) When is f concave down?
 (a,c) since f' is decreasing

e) When does f have a relative maximum?
 b since f' changes from $+$ to $-$

f) When does f have a relative minimum?
 d since f' changes from $-$ to $+$

g) When does f have a point of inflection?
 c since f'' changes sign

Find the value of c guaranteed by the MVT for $f(x) = 4x^2 + 5x$ on the interval $[-2, 1]$.

$$f'(x) = \frac{f(1) - f(-2)}{1 - (-2)}$$

$$8x + 5 = \frac{[4(1)^2 + 5(1)] - [4(-2)^2 + 5(-2)]}{3}$$

$$8x + 5 = \frac{9 - 4}{3}$$

$$8x + 5 = 1$$

$$8x = -4$$

$$x = -\frac{4}{8} \Rightarrow c = -\frac{1}{2}$$
Suppose \(y = x^3 - 3x \). [No Calculator]

a) Find the zeros of the function.
\[
y = x(x^2 - 3)
\]
x = 0, \(x^2 - 3 = 0 \)
x = \pm \sqrt{3}
\(0, -\sqrt{3}, \sqrt{3} \)

b) Determine where \(y \) is increasing or decreasing and justify your response.
\[
y' = 3x^2 - 3 \quad 0 = 3x^2 - 3 \quad (x + 1)(x - 1) = 0
\]
inc: \((\infty, -1)\) and \((1, \infty)\) since \(f' > 0 \)
dec: \((-1, 1)\) since \(f' < 0 \)

c) Determine all local extrema and justify your response.
min: \((-1, 2)\) since \(f' \) changes from - to +
max: \((-1, 2)\) since \(f' \) changes from + to -

d) Determine the points where \(y \) is concave up or concave down, and find any points of inflection.
Justify your responses.
\[
y'' = 6x
\]
concave down: \((-\infty, 0)\) since \(f'' < 0 \)
concave up: \((0, \infty)\) since \(f'' > 0 \)

e) Use all your information to sketch a graph of this function.

The function \(f \) is continuous on \([0, 3]\) and satisfies the following:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0 < (x < 1)</th>
<th>1</th>
<th>1 < (x < 2)</th>
<th>2</th>
<th>2 < (x < 3)</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>0</td>
<td>Neg</td>
<td>-2</td>
<td>Neg</td>
<td>0</td>
<td>Pos</td>
<td>3</td>
</tr>
<tr>
<td>(f')</td>
<td>-3</td>
<td>Neg</td>
<td>0</td>
<td>Pos</td>
<td>DNE</td>
<td>Pos</td>
<td>4</td>
</tr>
<tr>
<td>(f'')</td>
<td>0</td>
<td>Pos</td>
<td>1</td>
<td>Pos</td>
<td>DNE</td>
<td>Pos</td>
<td>0</td>
</tr>
</tbody>
</table>

a) Find the absolute extrema of \(f \) and where they occur.
\[
f' \quad \frac{-}{+} \quad \frac{+}{+} \quad \text{abs. max.} \quad (3, 3)
\]
\[
f'' \quad \text{min} \quad \quad \quad \text{abs. min.} \quad (1, -2)
\]

b) Find any points of inflection.
\[\text{none. since } f'' \text{ does not change signs}\]

c) Sketch a possible graph of \(f \).